

TUMOR TYPE Soft tissue Ewing sarcoma COUNTRY CODE IN REPORT DATE

ORDERED TEST #

ABOUT THE TEST FoundationOne[®] Heme is a comprehensive genomic profiling test designed to identify genomic alterations within hundreds of cancer-related genes in hematologic malignancies and sarcomas.

PATIENT	DISEASE Soft tissue Ewing sarcoma NAME DATE OF BIRTH SEX MEDICAL RECORD # Biomarker Findings Microsatellite status - MS-Stable Tumor Mutational Burdon - 2 Muta	ADDITIONAL RECIPIENT MEDICAL FACILITY ADDITIONAL RECIPIENT MEDICAL FACILITY ID PATHOLOGIST	Report Highlights • Variants with diagnostic impl	SPECIMEN SITE SPECIMEN ID SPECIMEN TYPE DATE OF COLLECTION SPECIMEN RECEIVED		
Tumor Mutational Burden - 2 Muts/Mb Genomic Findings For a complete list of the genes assayed, please refer to the Appendix. EWSR1EWSR1-ERG fusion BIOMARKER FINDINGS			 Specific cancer type: <i>EWSR1</i>-ERG fusion (p. 3) Evidence-matched clinical trial options based on this patient's genomic findings: (p. 4) THERAPY AND CLINICAL TRIAL IMPLICATIONS 			
Microsatellite status - MS-Stable			No therapies or clinical trials. See Biomarker Findings section			
Tumor Mutational Burden - 2 Muts/Mb			No therapies or clinical trials. See Biomarker Findings section			
G	SENOMIC FINDINGS		THERAPIES WITH CLINICAL RELEVANCE (IN PATIENT'S TUMOR TYPE)	THERAPIES WITH CLINICAL RELEVANCE (IN OTHER TUMOR TYPE)		
	EWSR1 - EWSR1-ERG fusion		none	none		
1	IO Trials see p. <u>4</u>					
пот	 Genomic alterations detected may be associated with a 	ctivity of certain FDA-approved drugs; ho	owever, the agents listed in this report may have varied o	linical evidence in the patient's tumor type.		

Neither the therapeutic agents nor the trials identified are ranked in order of potential or predicted efficacy for this patient, nor are they ranked in order of level of evidence for this patient's tumor type.

TUMOR TYPE Soft tissue Ewing sarcoma

ORDERED TEST #

BIOMARKER FINDINGS

BIOMARKER Microsatellite status

RESULT MS-Stable

POTENTIAL TREATMENT STRATEGIES

— Targeted Therapies —

On the basis of clinical evidence, MSS tumors are significantly less likely than MSI-H tumors to respond to anti-PD-1 immune checkpoint inhibitors¹⁻³, including approved therapies nivolumab and pembrolizumab⁴. In a retrospective analysis of 361 patients with solid tumors treated with pembrolizumab, 3% were MSI-H and

BIOMARKER Tumor Mutational Burden

RESULT 2 Muts/Mb

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies

On the basis of clinical evidence in solid tumors, increased TMB may be associated with greater sensitivity to immunotherapeutic agents, including anti-PD-L118-20, anti-PD-1 therapies18-21, and combination nivolumab and ipilimumab²²⁻²⁷. In multiple pan-tumor studies, increased tissue tumor mutational burden (TMB) was associated with sensitivity to immune checkpoint inhibitors^{18-21,28-32}. In the KEYNOTE 158 trial of pembrolizumab monotherapy for patients with solid tumors, significant improvement in ORR was observed for patients with TMB ≥10 Muts/Mb (as measured by this assay) compared with those with TMB <10 Muts/Mb in a large cohort that included multiple tumor types²⁸; similar findings were observed in the KEYNOTE 028 and 012 trials²¹. At the same TMB cutpoint, retrospective analysis of

experienced a significantly higher ORR compared with non-MSI-H cases $(70\% \text{ vs. } 12\%, p=0.001)^5$.

FREQUENCY & PROGNOSIS

Reports of MSI in sarcomas in the literature are conflicting and varied due to substantial heterogeneity, lack of consensus on the markers and methods used for MSI assessment, and small sample size in most studies⁶. In Ewing sarcoma, MSI at any level has been reported in 6% (1/18) to 48% (11/23) of cases⁷⁻⁹ or reported as absent¹⁰⁻¹¹, and high MSI has been observed in 2% (1/55) to 17% (4/23) of cases⁸⁻⁹. Studies of small patient cohorts have not shown a significant correlation between MSI status and survival in Ewing sarcoma⁸⁻⁹.

patients with solid tumors treated with any checkpoint inhibitor identified that tissue TMB scores \geq 10 Muts/Mb were associated with prolonged time to treatment failure compared with scores <10 muts/Mb (HR=0.68)³². For patients with solid tumors treated with nivolumab plus ipilimumab in the CheckMate 848 trial, improved responses were observed in patients with a tissue TMB ≥ 10 Muts/Mb independent of blood TMB at any cutpoint in matched samples³³. However, support for higher TMB thresholds and efficacy was observed in the prospective Phase 2 MyPathway trial of atezolizumab for patients with pan-solid tumors, where improved ORR and DCR was seen in patients with TMB \geq 16 Muts/Mb than those with TMB \geq 10 and <16 Muts/Mb³¹. Similarly, analyses across several solid tumor types reported that patients with higher TMB (defined as ≥16-20 Muts/Mb) achieved greater clinical benefit from PD-1 or PD-L1-targeting monotherapy compared with patients with higher TMB treated with chemotherapy34 or those with lower TMB treated with PD-1 or PD-L1-targeting agents¹⁹.

FREQUENCY & PROGNOSIS

Ewing sarcoma harbors a median TMB of 1.7 mutations per megabase (muts/Mb), and 0.5% of cases have high TMB (>20 muts/Mb)³⁵. Published data investigating the prognostic implications of

FINDING SUMMARY

Microsatellite instability (MSI) is a condition of genetic hypermutability that generates excessive amounts of short insertion/deletion mutations in the genome; it generally occurs at microsatellite DNA sequences and is caused by a deficiency in DNA mismatch repair (MMR) in the tumor¹². Defective MMR and consequent MSI occur as a result of genetic or epigenetic inactivation of one of the MMR pathway proteins, primarily MLH1, MSH2, MSH6, or PMS212-14. This sample is microsatellite-stable (MSS), equivalent to the clinical definition of an MSS tumor: one with mutations in none of the tested microsatellite markers¹⁵⁻¹⁷. MSS status indicates MMR proficiency and typically correlates with intact expression of all MMR family proteins^{12,14,16-17}.

TMB levels in Ewing sarcoma are generally limited (PubMed, Jul 2021). In one study, TMB greater than 11 muts/Mb (as measured in tissue samples) was associated with inferior outcomes for patients with Ewing sarcoma, although these patients also harbored alterations associated with poor prognosis, such as STAG2 and TP53 mutations³⁶.

FINDING SUMMARY

Tumor mutation burden (TMB, also known as mutation load) is a measure of the number of somatic protein-coding base substitution and insertion/deletion mutations occurring in a tumor specimen. TMB is affected by a variety of causes, including exposure to mutagens such as ultraviolet light in melanoma³⁷⁻³⁸ and cigarette smoke in lung cancer³⁹⁻⁴⁰, treatment with temozolomide-based chemotherapy in glioma⁴¹⁻⁴², mutations in the proofreading domains of DNA polymerases encoded by the POLE and POLD1 genes43-47, and microsatellite instability (MSI)^{43,46-47}. This sample harbors a TMB level associated with lower rates of clinical benefit from treatment with PD-1- or PD-L1-targeting immune checkpoint inhibitors compared with patients with tumors harboring higher TMB levels, based on several studies in multiple solid tumor types^{19-20,28}.

© 2022 Foundation Medicine, Inc. All rights reserved.

TUMOR TYPE Soft tissue Ewing sarcoma

GENOMIC FINDINGS

ORDERED TEST #

GENE EWSR1

ALTERATION EWSR1-ERG fusion

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies

Therapies targeting IGF1R might also be relevant for a patient with an EWSR1-ERG fusion. Phase 2 studies of anti-IGF1R antibodies reported response rates of 6-14.2%48-50, including a response to the IGF1R inhibitor figitumumab in 1 of 6 Ewing's sarcoma patients with EWS-ERG fusion⁴⁹. However, the presence of EWSR1 fusion alone does not predict response to IGF1R targeted therapies⁵¹. In preclinical xenograft models, combinations of IGF1R inhibitors with mTOR inhibitors were reported to have better efficacy than IGF1R single agent therapy⁵²⁻⁵³. In a Phase 1 study of the IGF1R inhibitor cixutumumab in combination with the mTOR inhibitor temsirolimus in 17 Ewing's sarcoma patients, 1 patient had a complete response and 4 patients had partial responses⁵⁴. Several preclinical studies have shown that EWSR1-FLI1 sensitizes cells to PARP inhibitors55-58, and one study reported that EWSR1-ERG driven cell lines were similarly sensitive to PARP inhibitors⁵⁶.

However, in a Phase 2 trial in Ewing's sarcoma, o of FINDING SUMMARY 12 patients responded to single-agent olaparib⁵⁹. The combination of PARP inhibitors with either temozolomide or irinotecan was more effective than single-agent olaparib against EWSR1-FLI1 cells in preclinical studies⁵⁶⁻⁵⁸.

FREQUENCY & PROGNOSIS

Fusions involving EWSR1 are hallmark driver mutations in some types of sarcoma, including Ewing and clear cell sarcoma⁶⁰⁻⁶². EWSR1-ERG fusions have been reported to occur in ~10% of Ewing sarcoma cases⁶²⁻⁶⁵. Fusions of ERG, as well as other transcription factors in the ETS family, such as the TMPRSS2-ERG fusion, have also been reported in ~50% of patients with prostate cancer⁶⁶. In one study of Ewing sarcoma, the percentage of patients with metastatic disease at diagnosis was higher for patients with EWSR1/ FUS-ERG fusions (44%) compared with EWSR1-FLI1 fusions (30%), but OS did not differ between the two fusion groups⁶⁷. Translocations and deletions of ERG are also seen in some acute myeloid leukemias, and ERG overexpression has been associated with poor prognosis⁶⁸⁻⁶⁹. Patients with EWSR1-ERG and EWSR1-FLI1 fusions exhibit significant similarities in their pathological and clinical characteristics, as well as progression-free and overall survival63,70.

EWSR1 (Ewing sarcoma breakpoint region 1) encodes the EWS protein, an RNA binding protein of largely unknown function that has been postulated to play a role in the regulation of hematopoietic stem cells⁷¹. Rearrangements that result in fusions between the EWSR1 transcriptional activation domain and the DNA binding domains of other transcription factors have been shown to be oncogenic^{65,72}. Rearrangements leading to fusion between the N-terminus of EWSR1 that mediates transcriptional activation and the C-terminal ETS domain of ERG that binds DNA, such as observed here, are expected to be oncogenic, as proteins with similar domain composition are able to transform cultured cells and drive tumor formation in mouse xenograft models72-73.

POTENTIAL DIAGNOSTIC IMPLICATIONS

EWSR1 fusions with partners such as FLI1, ERG, FEV, ETV1, E1AF, ZSG, and others are hallmark driver alterations of Ewing sarcoma and other mesenchymal tumors, including chondrosarcomas, round cell tumors, and myoepithelial tumors (NCCN Soft Tissue Sarcoma Guidelines, V3.2021)^{61-65,74-75}.

Electronically signed by J. Keith Killian, M.D. Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531 Nimesh R. Patel, M.D., Laboratory Director CLIA: 34D2044309 Foundation Medicine, Inc. | 1.888.988.3639

TUMOR TYPE Soft tissue Ewing sarcoma

CLINICAL TRIALS

ORDERED TEST #

NOTE Clinical trials are ordered by gene and prioritized should be investigated by the physician or research staff. medical screening to determine final eligibility. For by: age range inclusion criteria for pediatric patients, This is not a comprehensive list of all available clinical additional information about listed clinical trials or to proximity to ordering medical facility, later trial phase, and trials. Foundation Medicine displays a subset of trial conduct a search for additional trials, please see verification of trial information within the last two options and ranks them in this order of descending clinicaltrials.gov. Or visit priority: Qualification for pediatric trial \rightarrow Geographical https://www.foundationmedicine.com/genomicmonths. While every effort is made to ensure the accuracy of the information contained below, the information proximity → Later trial phase. Clinical trials listed here may testing#support-services. have additional enrollment criteria that may require available in the public domain is continually updated and GENE RATIONALE IGF1R inhibitors. Preclinical evidence suggests that cancers with EWSR1 EWSR1-ERG fusion may be sensitive to PARP and ALTERATION **EWSR1-ERG** fusion NCT05035745 PHASE 1/2 Selinexor & Talazoparib in Advanced Refractory Solid Tumors; Advanced/Metastatic Triple Negative TARGETS Breast Cancer (START) XPO1, PARP LOCATIONS: Singapore (Singapore) NCT03772561 PHASE 1 Phase I Study of AZD5363 + Olaparib + Durvalumab in Patients With Advanced or Metastatic Solid TARGETS **Tumor Malignancies** PARP, AKTs, PD-L1 LOCATIONS: Singapore (Singapore) NCT04801966 PHASE NULL Safety and Oversight of the Individually Tailored Treatment Approach: A Novel Pilot Study TARGETS CDK4, CDK6, PI3K-alpha, PD-L1, MEK, PARP, PD-1, BRAF LOCATIONS: Melbourne (Australia) NCT02264678 **PHASE 1/2** Ascending Doses of AZD6738 in Combination With Chemotherapy and/or Novel Anti Cancer Agents TARGETS ATR, PARP, PD-L1 LOCATIONS: Goyang-si (Korea, Republic of), Seoul (Korea, Republic of), Seongnam-si (Korea, Republic of), Villejuif (France), Cambridge (United Kingdom), Sutton (United Kingdom), Bordeaux (France), Oxford (United Kingdom), Coventry (United Kingdom), Manchester (United Kingdom) NCT04644068 PHASE 1/2 Study of AZD5305 as Monotherapy and in Combination With Anti-cancer Agents in Patients With TARGETS

LOCATIONS: Seoul (Korea, Republic of), Budapest (Hungary), Warszawa (Poland), Brno (Czechia), Gdynia (Poland), Napoli (Italy), Roma (Italy), Grzepnica (Poland), Padova (Italy), Modena (Italy)

Advanced Solid Malignancies

ERBB2, TROP2, PARP

ORDERED TEST #

PATIENT

CLINICAL TRIALS

 NCT04497116
 PHASE 1/2

 Study of RP-3500 in Advanced Solid Tumors
 TARGETS ATR, PARP

LOCATIONS: Copenhagen (Denmark), London (United Kingdom), Newcastle Upon Tyne (United Kingdom), Manchester (United Kingdom), Massachusetts, Rhode Island, Toronto (Canada), New York, Illinois, North Carolina

NCT03784014	PHASE 3
MOLECULAR PROFILING OF ADVANCED SOFT-TISSUE SARCOMAS	TARGETS ABL, KIT, ROS1, ALK, MET, ERBB2, EGFR, BRAF, MEK, PARP, PD-L1, CDK4, CDK6
LOCATIONS: Marseille (France), Dijon (France), Lyon (France), Clermont-Ferrand (France), Paris (France) Herblain (France)	e), Villejuif (France), Bordeaux (France), Saint-

NCT03907969	PHASE 1/2
A Clinical Trial to Evaluate AZD7648 Alone and in Combination With Other Anti-cancer Agents in Patients With Advanced Cancers	targets PARP, DNA-PK
LOCATIONS: London (United Kingdom), Newcastle upon Tyne (United Kingdom), Connecticut, Texas	
NCT04991480	PHASE 1/2
A Study of ART4215 for the Treatment of Advanced or Metastatic Solid Tumors	TARGETS PARP, Pol theta
LOCATIONS: London (United Kingdom), New York, Tennessee, Oklahoma, Florida, Texas	
NCT02769962	PHASE 1/2
Trial of CRLX101, a Nanoparticle Camptothecin With Olaparib in People With Relapsed/Refractory Small Cell Lung Cancer	targets PARP, TOP1
LOCATIONS: Maryland	

·

© 2022 Foundation Medicine, Inc. All rights reserved.

ORDERED TEST #

APPENDIX

Variants of Unknown Significance

NOTE One or more variants of unknown significance (VUS) were detected in this patient's tumor. These variants may not have been adequately characterized in the scientific literature at the time this report was issued, and/or the genomic context of these alterations makes their significance unclear. We choose to include them here in the event that they become clinically meaningful in the future. Please note that some VUS rearrangements between targeted genes and unknown fusion partners or intergenic regions detected by RNA sequencing may not be reported.

EWSR1

E1392del

BRIP1 A745T

FLYWCH1 P357R

MYO18A R691C

WDR90

R1364H

IGF1R A257V *PCLO* S4814A and V3204D

ZNF703 A276P

CIC

P722L

rearrangement *KMT2A (MLL)* E1860D and S2319T *RICTOR* **FANCL** M247V

> LRP1B R1072H

SPEN P2067L

Electronically signed by J. Keith Killian, M.D. | Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531 Nimesh R. Patel, M.D., Laboratory Director CLIA: 34D2044309 Foundation Medicine, Inc. | 1.888.988.3639 © 2022 Foundation Medicine, Inc. All rights reserved.

ORDERED TEST #

APPENDIX

Genes Assayed in FoundationOne®Heme

REPORT DATE

FoundationOne Heme is designed to include genes known to be somatically altered in human hematologic malignancies and sarcomas that are validated targets for therapy, either approved or in clinical trials, and/or that are unambiguous drivers of oncogenesis based on current knowledge. The current assay utilizes DNA sequencing to interrogate 406 genes as well as selected introns of 31 genes involved in rearrangements, in addition to RNA sequencing of 265 genes. The assay will be updated periodically to reflect new knowledge about cancer biology.

HEMATOLOGICAL MALIGNANCY DNA GENE LIST: ENTIRE CODING SEQUENCE FOR THE DETECTION OF BASE SUBSTITUTIONS, INSERTION/DELETIONS, AND COPY NUMBER ALTERATIONS

ABI 1	ACTR	ADGRA2 (GPR124)	AKT1	ΑΚΤ2	ΑΚΤ3	AIK	AMERI (FAM123B	or WTX)
APC	APH1A	AR	ARAF	ARFRP1	ARHGAP26 (GRAF)	ARID1A	ARID2
ASMTI	ASXI1	ATM	ATR	ATRX	AURKA	ALIRKB	AXIN1	AXI
R2M	RAP1	BARD1	BCI 10	BCI 11B	BCI 2	BCI 2L2	BCI6	BCL7A
BCOR	BCORI 1	BIRC3	BLM	BRAF	BRCA1	BRCA2	BRD4	BRIP1
BRSK1	BTG2	BIKES	RTIA	CAD	CALR*	CARD11	CRER	CRI
CCN6 (WISP3)	CCND1		CCND3	CCNF1	CCT6R	CD22	CD 274 (PD-11)	CD36
CD58	CD70	CD794	CD79R	CDC73	CDH1	CDK12	CDK4	CDK6
CDK8	CDKN1R		CDKN2R	CDKN2C	CERPA	CHD2	CHEK1	CHEK2
	CIITA	CKS1R	CPS1	CRERRP	CRKI	CRI F2	CSE1R	CSE3R
CTCF	CTNNA1	CTNNR1		CXCR4	DAXX	DDR2		DNM2
					ERE1	ECT2I	FED	EGER
FI P2	EMSV (C11orf30)	EP300	EDHA3	EDHAS	EDH 1 EDH 17	ECT2L FDHR1	ERBR2	EDIN ERRR3
EET Z FRRRA	ENG CHONSO	ESP1	ETTS1	ETV6	EXOSCE	ET HD1 F7H2	EKDD2 FAF1	ΕΛΟΟΟ ΓΔΝΙCΔ
		EANCE	EANCE	EANCE	EANCI	EAS (THERSES)	ERYO11	FRYO21
FRYM/7	FGE10	FGE14	FGE10	FGE23	FGF3	FGEA	FGE6	FGED1
FGED2	FGEP3	FGERA		FICN			FITA	
				FLON	CADDAER	CATA1	CATA2	CATAR
FUALZ	CNA11	FUXUS	CNA12	FR52	GADD45D	CRINIZA	CENSE	GATAS CTSE1
UD4 (C1/01139)	UDACA	UNAIZ			GNAS		GSK3D	GISEI
	HDAC4						~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
	(44)	HZAC6 (HIST HZAC)						
		H_{2BC4} (HIST H_{2BC})						201
					IKAS	HSPYUAAI		
		IGFIK	IKBKE	IKZFI	IKZFZ	IKZF3	IL/R	INHBA
INPP4B	INPP5D (SHIP)	IKFI	IKF4	IKF8	IK52	JAKI	JAKZ	JAK3
JARIDZ	JUN	KAI6A (MYSI3)	KDIVIZB	KDM4C	KDM5A	KDM5C	KDIM6A	KDR
KEAPI	KII	KLHL6	KMTZA (MLL)	KMT2C (MLL3)	KMT2D (MLL2)	KRAS	LEFT	LKPIB
	MAF	MAFB	MAGEDI	MALII	MAPZKI	MAP2K2	MAP2K4	MAP3KI
MAP3K14	MAP3K6	MAP3K/	MAPKI	MCLI	MDM2	MDM4	MED12	MEFZB
MEF2C	MENI	MET	MIBI	MITE	MKI6/	MLH1	MPL	MREII (MREIIA)
MSH2	MSH3	MSH6	MIOR	MUTYH	MYC	MYCL (MYCLI)	MYCN	MYD88
MY018A	NCOR2	NCSIN	NF1	NF2	NFE2L2	NFKBIA	NKX2-1	NODI
NOTCHI	NOTCH2	NPM1	NRAS	NSD2 (WHSC1 or N	IMSET)	NT5C2	NTRK1	NTRK2
NTRK3	NUP93	NUP98	P2RY8	PAGI	PAK3	PALB2	PASK	PAX5
PBRMT	РС	PCBP1	PCLO	PDCD1	PDCD11	PDCD1LG2 (PD-L2)		PDGFRA
PDGFRB	PDK1	PHF6	РІКЗСА	PIK3CG	PIK3R1	PIK3R2	PIM1	PLCG2
POTI	PPP2R1A	PRDM1	PRKAR1A	PRKDC	PRSS8	PTCHI	PTEN	PTPN11
PTPN2	PTPN6 (SHP-1)	PTPRO	RAD21	RAD50	RAD51	RAF1	RARA	RASGEF1A
RB1	RELN	RET	RHOA	RICTOR	RNF43	ROST	RPTOR	RUNX1
S1PR2	SDHA	SDHB	SDHC	SDHD	SERP2	SETBP1	SETD2	SF3B1
SGK1	SMAD2	SMAD4	SMARCA1	SMARCA4	SMARCB1	SMC1A	SMC3	SMO
SOCS1	SOCS2	SOCS3	SOX10	SOX2	SPEN	SPOP	SRC	SRSF2
STAG2	STAT3	STAT4	STAT5A	STAT5B	STAT6	STK11	SUFU	SUZ12
TAF1	TBL1XR1	TCF3 (E2A)	TCL1A (TCL1)	TENT5C (FAM46C)	TET2	TGFBR2	TLL2	ТМЕМЗОА
TMSB4XP8 (TMSL	3)	TNFAIP3	TNFRSF11A	TNFRSF14	TNFRSF17	TOP1	TP53	TP63
TRAF2	TRAF3	TRAF5	TSC1	TSC2	TSHR	TUSC3	ТҮК2	U2AF1

© 2022 Foundation Medicine, Inc. All rights reserved.

APPENDIX	Genes Assayed in Four

ndationOne®Heme

ORDERED TEST #								
U2AF2 ZNF24 (ZSCAN3)	VHL ZNF703	WDR90 ZRSR2	WT1	XBP1	XPO1	YY1AP1	<i>ZМҮМЗ</i>	ZNF217
*Note: the assay w	vas updated on 11/3	8/2016 to include th	he detection of alt	erations in CALR				
HEMATOLOGIC	AL MALIGNANCY	DNA GENE LIST	: FOR THE DETE	CTION OF SELEC	T REARRANGEM	ENTS		
ALK	BCL2	BCL6	BCR	BRAF	CCND1	CRLF2	EGFR	EPOR
ETV1	ETV4	ETV5	ETV6	EWSR1	FGFR2	IGH	IGK	IGL
JAK1	JAK2	KMT2A (MLL)	МҮС	NTRK1	PDGFRA	PDGFRB	RAF1	RARA
RET	ROS1	TMPRSS2	TRG					
HEMATOLOGIC	AL MALIGNANCY	RNA GENE LIST	: FOR THE DETE	CTION OF SELEC	T REARRANGEM	ENTS*		
ABI1	ABL1	ABL2	ACSL6	AFDN (MLLT4 or)	AF6)	AFF1	AFF4	ALK
ARHGAP26 (GRAF	7)	ARHGEF12	ARID1A	ARNT	ASXL1	ATF1	ATG5	ATIC
BCL10	BCL11A	BCL11B	BCL2	BCL3	BCL6	BCL7A	BCL9	BCOR
BCR	BIRC3	BRAF	BTG1	CAMTA1	CARS1 (CARS)	CBFA2T3	CBFB	CBL
CCND1	CCND2	CCND3	CD274 (PD-L1)	CDK6	CDX2	CEP43 (FGFR1OP)	CHIC2	CHN1
CIC	CIITA	CLP1	CLTC	CLTCL1	CNTRL (CEP110)	COL1A1	CREB3L1	CREB3L2
CREBBP	CRLF2	CSF1	CTNNB1	DDIT3	DDX10	DDX6	DEK	DUSP22
EGFR	EIF4A2	ELF4	ELL	ELN	EML4	EP300	EPOR	EPS15
ERBB2	ERG	ETS1	ETV1	ETV4	ETV5	ETV6	EWSR1	FCGR2B
FCRL4	FEV	FGFR1	FGFR2	FGFR3	FLI1	FNBP1	FOXO1	FOXO3
FOXO4	FOXP1	FSTL3	FUS	GAS7	GLI1	GMPS	GPHN	H4C9 (HIST1H4I)
HERPUD1	HEY1	HIP1	HLF	HMGA1	HMGA2	HOXA11	HOXA13	НОХАЗ
НОХА9	HOXC11	HOXC13	HOXD11	HOXD13	HSP90AA1	HSP90AB1	IGH	IGK
IGL	IKZF1	IL21R	IL3	IRF4	ΙΤΚ	JAK1	JAK2	JAK3
JAZF1	KAT6A (MYST3)	KDSR	KIF5B	KMT2A (MLL)	LASP1	LCP1	LMO1	LMO2
LPP	LYL1	MAF	MAFB	MALT1	MDS2	МЕСОМ	MLF1	MLLT1 (ENL)
MLLT10 (AF10)	MLLT3	MLLT6	MN1	MNX1	MRTFA (MKL1)	MSI2	MSN	MUC1
МҮВ	МҮС	MYH11	МҮН9	NACA	NBEAP1 (BCL8)	NCOA2	NDRG1	NF1
NF2	NFKB2	NIN	NOTCH1	NPM1	NR4A3	NSD1	NSD2 (WHSC1 or I	MMSET)
NSD3 (WHSC1L1)	NTRK1	NTRK2	NTRK3	NUMA1	NUP214	NUP98	NUTM2A	OMD
P2RY8	PAFAH1B2	PAX3	PAX5	PAX7	PBX1	PCM1	PCSK7	PDCD1LG2 (PD-L2)
PDE4DIP	PDGFB	PDGFRA	PDGFRB	PER1	PHF1	PICALM	PIM1	PLAG1
PML	POU2AF1	РРР1СВ	PRDM1	PRDM16	PRRX1	PSIP1	PTCH1	ΡΤΚ7
RABEP1	RAF1	RALGDS	RAP1GDS1	RARA	RBM15	RET	RHOH	RNF213
RNF217-AS1 (STL)		ROS1	RPL22	RPN1	RUNX1	RUNX1T1 (ETO)	RUNX2	SEC31A
SEPTIN5 (SEPT5)	SEPTIN6 (SEPT6)	SEPTIN9 (SEPT9)	SET	SH3GL1	SLC1A2	SNX29 (RUNDC2A)	SRSF3
SS18	SSX1	SSX2	SSX4	STAT6	SYK	TAF15	TAL1	TAL2
TBL1XR1	TCF3 (E2A)	TCL1A (TCL1)	TEC	TET1	TFE3	TFG	TFPT	TFRC
TLX1	TLX3	TMPRSS2	TNFRSF11A	TOP1	TP63	ТРМЗ	TPM4	TRIM24
TRIP11	TTL	ТҮК2	USP6		YPEL5	ZBTB16	ZMYM2	ZNF384
ZNF521								

*Note: some VUS rearrangements between targeted genes and unknown fusion partners or intergenic regions detected by RNA sequencing may not be reported.

ADDITIONAL ASSAYS: FOR THE DETECTION OF SELECT CANCER BIOMARKERS

Microsatellite (MS) status Tumor Mutational Burden (TMB)

Electronically signed by J. Keith Killian, M.D. | Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531 Nimesh R. Patel, M.D., Laboratory Director CLIA: 34D2044309 Foundation Medicine, Inc. | 1.888.988.3639

© 2022 Foundation Medicine, Inc. All rights reserved.

ORDERED TEST #	APPEN	IDIX Performance Specifications
The median exon coverage for this sample is 904x		
ACCURACY		
Sensitivity: Base Substitutions	At ≥5% Minor Allele Frequency	>99.0%
Sensitivity: Insertions/Deletions (1-40bp)	At ≥10% Minor Allele Frequency	98.0%
Sensitivity: Focal Copy Number Alterations (Homozygous Deletions or Amplifications)	At ≥8 copies	>95.0%
Sensitivity: Microsatellite Instability-High (MSI-H) status	Positive Predictive Agreement (PPA)	100.0% (87.54%-100.00%)*
Sensitivity: Microsatellite Stable (MSS) status	Positive Predictive Agreement (PPA)	89.66% (81.50%, 94.46%)*
Sensitivity: Known Gene Fusions	>95.0%	
Specificity: Base Substitutions, Insertions/Deletions, and Focal Copy Number Alterations	Positive Predictive Value (PPV)	>99.0%
Specificity: Known Gene Fusions	Positive Predictive Value (PPV)	>95.0%
Specificity: Microsatellite Instability-High (MSI-H) status	Negative Predictive Agreement (NPA)	97.44% (91.12%-99.29%)*
Specificity: Microsatellite Stable (MSS) status	Negative Predictive Agreement (NPA)	94.44% (86.57%, 97.82%)*
Accuracy: Tumor Mutation Burden	At ≥20% tumor nuclei	>90.0%
Reproducibility (average concordance between replicates)	97.0% inter-batch precision 97.0% intra-batch precision 95.0% microsatellite status precision 96.0% tumor mutation burden precision	
	•	

*95% Confidence Interval

Assay specifications were determined for typical median exon coverage of approximately 500X. For additional information regarding the validation of FoundationOne®Heme, please refer to the article He, J. et al. Integrated genomic DNA/RNA profiling of hematologic malignancies in the clinical setting, Blood (2016 Jun. 16).

In the fractional-based MSI algorithm, a tumor specimen will be categorized as MSI-H, MSS, or MS-Equivocal according to the fraction of microsatellite loci determined to be altered or unstable (i.e., the fraction unstable loci score). In the FoundationOne Heme assay, MSI is evaluated based on a genome-wide analysis across >2000 microsatellite loci. For a given microsatellite locus, non-somatic alleles are discarded, and the microsatellite is categorized as unstable if remaining alleles differ from the reference genome. The final fraction unstable loci score is calculated as the number of unstable microsatellite loci divided by

the number of evaluable microsatellite loci. The MSI-H and MSS cut-off thresholds were determined by analytical concordance to a PCR comparator assay using a pan-tumor sample set. Patients with results categorized as "MS-Stable" with median exon coverage <300X, "MS-Equivocal," or "Cannot Be Determined" should receive confirmatory testing using a validated orthogonal (alternative) method.

Tumor Mutational Burden (TMB) is determined by measuring the number of somatic mutations in sequenced genes on the FoundationOne Heme test and extrapolating to the genome as a whole. TMB is assayed for all FoundationOne Heme samples and is reported as the number of mutations per megabase (Muts/Mb). Tumor Mutational Burden is reported as "Cannot Be Determined" if the sample is not of sufficient quality to confidently determine Tumor Mutational Burden.

© 2022 Foundation Medicine, Inc. All rights reserved.

ORDERED TEST #

ABOUT FOUNDATIONONE HEME

FoundationOne®Heme is a comprehensive genomic profiling test for hematologic malignancies and sarcomas. The test is designed to provide physicians with clinically actionable information to help with diagnostic sub-classification, prognosis assessment, and targeted therapeutic selection. Test results provide information about clinically significant alterations, potential targeted therapies, available clinical trials, and quantitative markers that may support immunotherapy clinical trial enrollment. FoundationOne Heme is analytically validated to detect all classes of genomic alterations in more than 400 cancer-related genes. In addition to DNA sequencing, FoundationOne Heme employs RNA sequencing across 265 genes to capture a broad range of gene fusions, common drivers of hematologic malignancies and sarcomas.

FoundationOne Heme was developed and its performance characteristics determined by Foundation Medicine, Inc. (Foundation Medicine). FoundationOne Heme has not been cleared or approved by the United States Food and Drug Administration (FDA). The FDA has determined that such clearance or approval is not necessary. FoundationOne Heme may be used for clinical purposes and should not be regarded as purely investigational or for research only. Foundation Medicine's clinical reference laboratory is certified under the Clinical Laboratory Improvement Amendments of 1988 (CLIA) as qualified to perform high-complexity clinical testing.

THE REPORT

Incorporates analyses of peer-reviewed studies and other publicly available information identified by Foundation Medicine; these analyses and information may include associations between a molecular alteration (or lack of alteration) and one or more drugs with potential clinical benefit (or potential lack of clinical benefit), including drug candidates that are being studied in clinical research. Note: A finding of biomarker alteration does not necessarily indicate pharmacologic effectiveness (or lack thereof) of any drug or treatment regimen; a finding of no biomarker alteration does not necessarily indicate lack of pharmacologic effectiveness (or effectiveness) of any drug or treatment regimen.

Diagnostic Significance

FoundationOne Heme identifies alterations to select cancer-associated genes or portions of genes (biomarkers). In some cases, the Report also highlights selected negative test results regarding biomarkers of clinical significance. Qualified Alteration Calls (Equivocal and Subclonal)

An alteration denoted as "amplification - equivocal" implies that FoundationOne Heme data provide some, but not unambiguous, evidence that the copy number of a gene exceeds the threshold for identifying copy number amplification. The threshold used in FoundationOne Heme for identifying a copy number amplification is five (5) for ERBB2 and six (6) for all other genes. Conversely, an alteration denoted as "loss equivocal" implies that FoundationOne Heme data provide some, but not unambiguous, evidence for homozygous deletion of the gene in question. An alteration denoted as "subclonal" is one that FoundationOne Heme analytical methodology has identified as being present in <10% of the assayed tumor DNA.

Ranking of Therapies and Clinical Trials Ranking of Therapies in Summary Table Therapies are ranked based on the following criteria: Therapies with clinical benefit (ranked alphabetically within each evidence category), followed by therapies associated with resistance (when applicable).

Ranking of Clinical Trials Pediatric trial qualification \rightarrow Geographical proximity \rightarrow Later trial phase.

NATIONAL COMPREHENSIVE CANCER NETWORK® (NCCN®) CATEGORIZATION

Biomarker and genomic findings detected may be associated with certain entries within the NCCN Drugs & Biologics Compendium® (NCCN Compendium®) (www.nccn.org). The NCCN Categories of Evidence and Consensus indicated reflect the highest possible category for a given therapy in association with each biomarker or genomic finding. Please note, however, that the accuracy and applicability of these NCCN categories within a report may be impacted by the patient's clinical history, additional biomarker information, age, and/or co-occurring alterations. For additional information on the NCCN categories, please refer to the NCCN Compendium®. Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). © National Comprehensive Cancer Network, Inc. 2022. All rights reserved. To view the most recent and complete version of the guidelines, go online to NCCN.org. NCCN makes no warranties of any kind whatsoever regarding their content, use or application and disclaims any responsibility for their application or use in any way.

APPENDIX

About FoundationOne®Heme

LEVEL OF EVIDENCE NOT PROVIDED

Drugs with potential clinical benefit (or potential lack of clinical benefit) are not evaluated for source or level of published evidence.

NO GUARANTEE OF CLINICAL BENEFIT

This Report makes no promises or guarantees that a particular drug will be effective in the treatment of disease in any patient. This Report also makes no promises or guarantees that a drug with potential lack of clinical benefit will in fact provide no clinical benefit.

NO GUARANTEE OF REIMBURSEMENT

Foundation Medicine makes no promises or guarantees that a healthcare provider, insurer or other third party payor, whether private or governmental, will reimburse a patient for the cost of FoundationOne Heme.

TREATMENT DECISIONS ARE RESPONSIBILITY OF PHYSICIAN

Drugs referenced in this Report may not be suitable for a particular patient. The selection of any, all or none of the drugs associated with potential clinical benefit (or potential lack of clinical benefit) resides entirely within the discretion of the treating physician. Indeed, the information in this Report must be considered in conjunction with all other relevant information regarding a particular patient, before the patient's treating physician recommends a course of treatment. Decisions on patient care and treatment must be based on the independent medical judgment of the treating physician, taking into consideration all applicable information concerning the patient's condition, such as patient and family history, physical examinations, information from other diagnostic tests, and patient preferences, in accordance with the standard of care in a given community. A treating physician's decisions should not be based on a single test, such as this Test, or the information contained in this Report. Certain sample or variant characteristics may result in reduced sensitivity. These include: subclonal alterations in heterogeneous samples, low sample quality or with homozygous losses of <3 exons; and deletions and insertions >40bp, or in repetitive/high homology sequences. FoundationOne Heme is performed using DNA and RNA derived from tumor, and as such germline events may not be reported.

The following targets typically have low coverage resulting in a reduction in sensitivity: SDHD exon 4, TNFRSF11A exon1, and TP53 exon 1.

FoundationOne Heme fulfills the requirements of the European Directive 98/79 EC for in vitro

Electronically signed by J. Keith Killian, M.D. | Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531 Nimesh R. Patel, M.D., Laboratory Director CLIA: 34D2044309 Foundation Medicine, Inc. | 1.888.988.3639 © 2022 Foundation Medicine, Inc. All rights reserved.

ORDERED TEST #

diagnostic medical devices and is registered as a CE-IVD product by Foundation Medicine's EU Authorized Representative, Qarad b.v.b.a, Cipalstraat 3, 2440 Geel, Belgium.

CE REPORT HIGHLIGHTS

The Report Highlights includes select genomic and therapeutic information with potential impact on patient care and treatment that is specific to the genomics and tumor type of the sample analyzed. This section may highlight information including targeted therapies with potential sensitivity or resistance; evidence-matched clinical trials; and variants with potential diagnostic, prognostic, nontargeted treatment, germline, or clonal hematopoiesis implications. Information included in the Report Highlights is expected to evolve with advances in scientific and clinical research. Findings included in the Report Highlights should be considered in the context of all other information in this report and other relevant patient information. Decisions on patient care and treatment are the responsibility of the treating physician.

VARIANTS TO CONSIDER FOR FOLLOW-UP GERMLINE TESTING

The variants indicated for consideration of followup germline testing are 1) limited to reportable short variants with a protein effect listed in the ClinVar genomic database (Landrum et al., 2018; 29165669) as Pathogenic, Pathogenic/Likely Pathogenic, or Likely Pathogenic (by an expert panel or multiple submitters), 2) associated with hereditary cancer-predisposing disorder(s), 3) detected at an allele frequency of >10%, and 4) in select genes reported by the ESMO Precision Medicine Working Group (Mandelker et al., 2019; 31050713) to have a greater than 10% probability of germline origin if identified during tumor sequencing. The selected genes are ATM, BAP1, BRCA1, BRCA2, BRIP1, CHEK2, FLCN, MLH1, MSH2, MSH6, MUTYH, PALB2, RET, SDHA, SDHB, SDHC, SDHD, TSC2, and VHL, and are not inclusive of all cancer susceptibility genes. The content in this report should not substitute for genetic counseling or follow-up germline testing, which is needed to distinguish whether a finding in this patient's tumor sequencing is germline or somatic. Interpretation should be based on clinical context.

VARIANTS THAT MAY REPRESENT CLONAL HEMATOPOIESIS

Variants that may represent clonal hematopoiesis (CH) are limited to select reportable short variants in defined genes identified in solid tumors only.

Variant selection was determined based on gene tumor-suppressor or oncogene status, known role in solid tumors versus hematological malignancies, and literature prevalence. The defined genes are *ASXL1, CBL, DNMT3A, IDH2, JAK2, KMT2D (MLL2), MPL, MYD88, SF3B1, TET2,* and *U2AF1* and are not inclusive of all CH genes. The content in this report should not substitute for dedicated hematological workup. Comprehensive genomic profiling of solid tumors detects nontumor alterations that are due to CH. Patient-matched peripheral blood mononuclear cell sequencing is required to conclusively determine if this alteration is present in tumor or is secondary to CH. Interpretation should be based on clinical context.

SELECT ABBREVIATIONS

PATIENT

ABBREVIATION	DEFINITION				
CR	Complete response				
DCR	Disease control rate				
DNMT	DNA methyltransferase				
HR	Hazard ratio				
ITD	Internal tandem duplication				
MMR	Mismatch repair				
muts/Mb	Mutations per megabase				
NOS	Not otherwise specified				
ORR	Objective response rate				
OS	Overall survival				
PD	Progressive disease				
PFS	Progression-free survival				
PR	Partial response				
SD	Stable disease				
ТКІ	Tyrosine kinase inhibitor				

REFERENCE SEQUENCE INFORMATION

Sequence data is mapped to the human genome, Genome Reference Consortium Human Build 37 g (GRCh37), also known as hg19.

MR Suite Version (RG) 6.3.0

About FoundationOne®Heme

© 2022 Foundation Medicine, Inc. All rights reserved.

APPENDIX References

ORDERED TEST #

- 1. Gatalica Z, et al. Cancer Epidemiol. Biomarkers Prev. (2014) pmid: 25392179
- 2. Kroemer G, et al. Oncoimmunology (2015) pmid: 26140250
- 3. Lal N, et al. Oncoimmunology (2015) pmid: 25949894
- 4. Le DT, et al. N. Engl. J. Med. (2015) pmid: 26028255
- 5. Ayers et al., 2016; ASCO-SITC Abstract P60
- Monument MJ, et al. ISRN Oncol (2012) pmid: 23401795
 Ebinger M, et al. Cancer Genet. Cytogenet. (2005) pmid: 15721646
- Alldinger I, et al. J. Cancer Res. Clin. Oncol. (2007) pmid: 17530287
- 9. Ohali A, et al. Cancer Genet. Cytogenet. (2004) pmid: 15041223
- 10. Suwa K, et al. J Orthop Sci (1999) pmid: 10370164
- Monument MJ, et al. PLoS ONE (2014) pmid: 25093581
 Kocarnik JM, et al. Gastroenterol Rep (Oxf) (2015)
- Kocarnik JM, et al. Gastroenterol Rep (Oxt) (2015) pmid: 26337942
 You JF, et al. Br. J. Cancer (2010) pmid: 21081928
- You Jr, et al. Br. J. Cancer (2010) pmid: 21081928
 Bairwa NK, et al. Methods Mol. Biol. (2014) pmid: 24623249
- **15.** Boland CR, et al. Cancer Res. (1998) pmid: 9823339
- 16. Pawlik TM, et al. Dis. Markers (2004) pmid: 15528785
- Boland CR, et al. Gastroenterology (2010) pmid: 20420947
- Samstein RM, et al. Nat. Genet. (2019) pmid: 30643254
 Goodman AM, et al. Mol. Cancer Ther. (2017) pmid:
- 28835386 20. Goodman AM, et al. Cancer Immunol Res (2019) pmid: 31405947
- 21. Cristescu R, et al. Science (2018) pmid: 30309915
- 22. Ready N, et al. J. Clin. Oncol. (2019) pmid: 30785829
- 23. Hellmann MD, et al. N. Engl. J. Med. (2018) pmid: 29658845

- 24. Hellmann MD, et al. Cancer Cell (2018) pmid: 29657128
- 25. Hellmann MD, et al. Cancer Cell (2018) pmid: 29731394
- 26. Rozeman EA, et al. Nat Med (2021) pmid: 33558721
- 27. Sharma P, et al. Cancer Cell (2020) pmid: 32916128
- 28. Marabelle A, et al. Lancet Oncol. (2020) pmid: 32919526
- **29.** Ott PA, et al. J. Clin. Oncol. (2019) pmid: 30557521
- Cristescu R, et al. J Immunother Cancer (2022) pmid: 35101941
- 31. Friedman CF, et al. Cancer Discov (2022) pmid: 34876409
- 32. Sturgill EG, et al. Oncologist (2022) pmid: 35274716
- 33. Schenker at al., 2022; AACR Abstract 7845
- 34. Legrand et al., 2018; ASCO Abstract 12000
- **35.** Chalmers ZR, et al. Genome Med (2017) pmid: 28420421
- 36. Liu KX, et al. Cancer (2019) pmid: 30602061
- 37. Pfeifer GP, et al. Mutat. Res. (2005) pmid: 15748635
- Hill VK, et al. Annu Rev Genomics Hum Genet (2013) pmid: 23875803
- 39. Pfeifer GP, et al. Oncogene (2002) pmid: 12379884
- 40. Rizvi NA, et al. Science (2015) pmid: 25765070
- 41. Johnson BE, et al. Science (2014) pmid: 24336570
- 42. Choi S, et al. Neuro-oncology (2018) pmid: 29452419
- 43. Cancer Genome Atlas Research Network, et al. Nature (2013) pmid: 23636398
- **44.** Briggs S, et al. J. Pathol. (2013) pmid: 23447401
- 45. Heitzer E, et al. Curr. Opin. Genet. Dev. (2014) pmid: 24583393
- 46. Nature (2012) pmid: 22810696
- 47. Roberts SA, et al. Nat. Rev. Cancer (2014) pmid: 25568919
- 48. Pappo AS, et al. J. Clin. Oncol. (2011) pmid: 22025149

- 49. Juergens H, et al. J. Clin. Oncol. (2011) pmid: 22025154
- 50. Tap WD, et al. J. Clin. Oncol. (2012) pmid: 22508822
- **51.** Ho AL, et al. J. Clin. Oncol. (2011) pmid: 22025158
- 52. Beltran PJ, et al. J. Pharmacol. Exp. Ther. (2011) pmid: 21385891
- **53.** Kurmasheva RT, et al. Cancer Res. (2009) pmid: 19789339
- 54. Naing A, et al. Clin. Cancer Res. (2012) pmid: 22465830
- **55.** Garnett MJ, et al. Nature (2012) pmid: 22460902
- 56. Brenner JC, et al. Cancer Res. (2012) pmid: 22287547
- **57.** Stewart E, et al. Cell Rep (2014) pmid: 25437539
- 58. Smith MA, et al. Clin. Cancer Res. (2015) pmid: 25500058
- **59.** Choy E, et al. BMC Cancer (2014) pmid: 25374341
- 60. Yang L, et al. Hum. Pathol. (2012) pmid: 22406360
- **61.** Toomey EC, et al. Oncogene (2010) pmid: 20543858
- Warren M, et al. Hum. Pathol. (2013) pmid: 23706910
 Le Deley MC, et al. J. Clin. Oncol. (2010) pmid: 20308673
- **64.** Zoubek A, et al. Br. J. Cancer (1994) pmid: 7524604
- 65. Sankar S, et al. Cancer Genet (2011) pmid: 21872822
- 66. Scheble VJ, et al. Mod. Pathol. (2010) pmid: 20473283
- 67. Tsuda Y, et al. Genes Chromosomes Cancer (2020) pmid: 32362012
- 68. Int. J. Biochem. Cell Biol. (2011) pmid: 21664289
- **69.** Yi H, et al. Oncogene (1997) pmid: 9178886
- **70.** Ginsberg JP, et al. J. Clin. Oncol. (1999) pmid: 10561219
- 71. Cho J, et al. Blood (2011) pmid: 21030557
- 72. Braunreiter CL, et al. Cell Cycle (2006) pmid: 17172842
- 73. Ouchida M, et al. Oncogene (1995) pmid: 7566963
- 74. Cancer (2020) pmid: 33048366
- 75. Diaz-Perez JA, et al. Hum Pathol (2019) pmid: 31078563